A-In the Glorious Qur'an
Universe
Earth
Plant
Animals
Human Beings
Historical
Legislative
Educational
Medical
Understanding Islam
Embracing Islam
Signs of the Greatness of Allah
Prophets of Islam
Miscellaneous
Questions &Answers
New Muslims
B- In the Sunnah
Universe
Earth
Plant
Animals
Human Beings
Historical
Legislative
Educational
Medical
Understanding Islam
Embracing Islam
Signs of the Greatness of Allah
Prophets of Islam
Miscellaneous
Questions &Answers

Brought forth Iron into the earth

"..And We brought forth iron wherein is mighty power (in matters of war), as well as many benefits for mankindů" 

(Surat Al-Hadid (The Iron): 25)

 

By: Dr. / Zaghloul El-Naggar

 The Glorious Qur'an contains a distinct "Surah" (Chapter) entitled "Al-Hadid" (The Iron) which emphasizes in one of its verses (Verse 25) the following two facts:

1-     That iron was sent down to Earth i.e. it is of a celestial (extra-terrestrial) origin.

2-     That iron is mighty strong and has many benefits for mankind.  

This Qur'anic verse reads: 

"..And We brought forth iron wherein is mighty power (in matters of war), as well as many benefits for mankindů" 

(Surat Al-Hadid (The Iron): 25)

 

    We now know that iron is the most abundant element in the total composition of the Earth (>35% of its total mass) and the fourth abundant element in its crust (5.6%). This observation has led to the logical conclusion that the majority of the Earth's iron must be hidden bellow its crust (i.e. within both its cores and mantles). If this is the case, how could this element be send down to Earth as stated in the above mentioned Qur'anic verse? And how could it have penetrated from the outer crust of the Earth to its inner zones of mantle and core?

 

  To answer these questions, the Earth must be treated as part of the total cosmos from which it was separated, not merely as an isolated entity. In this context, recent cosmological discoveries have proved that:

 

1- Hydrogen (the simplest and the lightest known element) is by far the most abundant element in the observed universe (constituting about 74%).

 

2- This predominant, universal hydrogen is followed in abundance by helium (the second in the periodic table of elements) which is less abundant than hydrogen (constituting about 24%).

 

3- These two, simple nuclei of hydrogen and helium constitute together the greatest percentage of the observed universe (> 98%), while heavier elements are only represented by traces that do not exceed 1-2% of its total mass, and are only locally concentrated in certain heavenly bodies.

 

  These fundamental discoveries have led to the important conclusion that hydrogen nuclei are the basic building blocks from which all the other were and are currently being created by the process of the nuclear fusion. This process (of the nucleosynthesis of elements by nuclear fusion) is self- sustaining, generally highly exothermic (i.e. releases excessively large quantities of energy) and is the source of the very hot and glowing nature of all stars. However, when the process reaches the level of producing iron, it becomes endothermic (i.e. energy consuming) and hence, the star either explodes or condenses on itself and fades out gradually to complete dimming and absolute darkness (a stage generally known as the Black Hole).

 

  Nuclear Fusion within our sun mainly produces helium, with a very limited number of slightly heavier elements. The percentage of iron in the sun is estimated to be in the order of 0.0037%. Knowing that the Earth as well as all other planets and satellites in our solar system were actually separated from the sun, which does not generate iron, another question was raised:

 

  Where had the immense quantity of iron in our Earth come from?

 

  Our sun is a modest star, with a surface temperature of about 6,000 oC, and an inner core temperature of about 15,000,000 oC. Such figures are far below the calculated temperatures for the production of iron by the process of nuclear fusion (which exceeds 5 X 109 K). Consequently, other sources much hotter than the sun were sought for as possible sites for the generation of iron in the observed universe. One of the suggested sources of excessive heat was the "Big Bang" explosion of the initial singularity from which our universe was created. However all speculations about this event suggest that shortly after the "Big Bang" matter was in such an elementary stage that only hydrogen and helium (with possible traces of lithium) could have been generated. Again, if any traces of iron were produced at that stage, iron would have been more evenly distributed in the observed universe, which is not the case.

 

   One second after the "Big Bang", the temperature of the early universe is calculated to have been in the range of ten billion degrees Celsius. At this stage, the early universe is visualized to have been in the form of a steadily expanding, huge cloud of smoke, mainly composed of elementary forms of both matter and energy such as neutrons, protons, electrons, photons, neutrinos and their counter particles (or anti-particles). Radiations in the form of photons from this very hot early stage of the universe had been predicted by Gamow and others (1948) to be still in existence around the observed universe, coming from all directions with equal intensity. This prediction was later proved to be true by both Penzias and Wilson (1965) through their discovery of the cosmic microwave background radiation coming from all directions in the observed universe with equal intensity, together with a remnant temperature reduced to only a few degrees above the absolute zero (-2730C).

 

   During the first three minutes of the history of our universe, the neutrons are believed to have either decayed into protons and electrons, or combined with other neutrons to produce deuterium (or heavy hydrogen), which could combine to form helium. In its turn, helium nuclei could partly fuse to produce traces of lithium (the third element in the periodic table), but nothing heavier than this element is believed to have been generated as a result of the "Big Bang" explosion. Consequently, all of the universal hydrogen and most of the helium are believed to have been created immediately after the "Big Bang", while the rest of the universal helium is believed to have been steadily generated from the burning of hydrogen in the interiors of "Main-Sequence Stars" like our Sun. After the "Big Bang" explosion gravitation is believed to have pulled together clouds of smoke to form giant clusters of matter. Continued contraction of these eventually increased their temperature due to the interaction of colliding particles and the pressures created by the large gravitational attraction. As the temperature approached 15 million degrees Celsius, the electrons in the formed atoms were ripped off to create a plasma state. Continued contraction proceeded until the particles in the plasma moved with such high velocities that they began to fuse hydrogen into helium, producing stars with enough energy to generate an outward push (pressure) that reached equilibrium with the inward pull of gravity.

 

  Most recently, elements heavier than lithium have been proved to be currently synthesized by the process of nuclear fusion in the cores of massive stars (at least ten times the mass of our sun) during their late stages of development. Such massive stars are seen burning helium to carbon, oxygen, silicon, sulphur and finally into iron when elements of the iron group are produced, the process of nuclear fusion cannot proceed any further. Elements heavier than iron (and its group of elements) are believed to have been created in the outer envelopes of super giant stars or during the explosion of nova in the form of supernova through the process of capturing elementary particles by the chattered iron cores of the exploding stars.

 

  Consequently, it has been proved that stars are cosmic reactors in which most of the known elements are created from hydrogen and/or helium by the process of nuclear fusion. At the same time the staggering energy of stars comes from this process of intra-stellar nucleosynthesis of elements, which involves the combining of light elements into heavier ones by nuclear fusion (nuclear burning). This process requires a high speed collision which can only be achieved at very high temperatures. The minimum temperature required for the fusion of hydrogen into helium is calculated to be in the range of 5,000,000 oC. With the increase in the atomic weight of the element produced by nuclear fusion, this temperature increases steadily to several billions of the degrees. For example, the nuclear fusion of hydrogen into carbon requires a temperature of about one billion degrees Celsius.

 

  Burning (fusing) hydrogen into helium occurs during most of the stars' lifetime. After the hydrogen in the star's core is exhausted (i.e. fused to helium), the star either changes into a" Red Giant" then into a "Dwarf" or changes into a "Red super giant", then into a "Nova", when it starts to burn helium, fusing it into progressively heavier elements (depending on its initial mass) until the iron group is reached. Up to this point, the process of nucleosynthesis of elements is highly exothermic (i.e. releases excessive quantities of energy), but the formation of the iron group elements is highly endothermic (i.e. requires the input of excessive quantities of energy). The explosions of "Nova" in the form of "Supernova" result from the exhaustion of the fuel supplies in the cores of such massive stars and the burning of all elements there into the iron group. Heavier nuclei are thought to be formed during the explosions of the supernova.

    

     The nucleosynthesis of the iron group of elements in the inner cores of massive stars such as the "Nova" is the final stage of the process of nuclear fusion. Once this stage is reached, the "Nova" explodes in the form of a "Supernova", shattering its iron core to pieces that fly into the universal space, providing other celestial bodies with their requisite iron. With this analysis the celestial (extra-terrestrial) origin of iron in both our Earth and the rest of the solar system is confirmed.

 

NUCEOSYNTHESIS OF ELEMENTS AND THE EVLUTIONARY DEVELOPMENT OF STARS AS A SUPPORTING EVIDENCE FOR THE EXTRA-TERRESTRIAL ORIGIN OF IRON:

 

  The nucleosynthesis of elements takes place in the inner cores of stars according to their initial masses as well as to how much mass they lose along the way of their development. This has been proved by following the thermonuclear reactions in the cores of the "Main Sequence-Stars" as follows:

 

    A "Main Sequence Star" with an initial mass close to that of our sun stars with the fusion of its hydrogen nuclei to produce helium. Then the gradual increase in the amount of the produced helium nuclei pushes the remaining, non-fused hydrogen nuclei outwardly in the form of a burning hydrogen front around a helium core. In this core, gravity dominates over the outward pressure, leading to the further contraction of the helium nuclei and the further expansion of the outward, burning hydrogen front, and hence this "Main Sequence Star" changes into what is known as a "Red Giant". Further contraction of the "Red Giant's" helium core and expansion of its outer burning front, will cause a mild core collapse and eventually will lead to the depletion of its mass to about 20% of the original mass,  changing into what is known as a "White Dwarf" (the size of the Earth but the mass of the sun). With subsequent slow gravitational contraction, shrinking, cooling and dimming, the "White Dwarf" changes into what is described as a "Brown Dwarf" or a "Black Dwarf". This process of core collapse, gradual shrinking, cooling and darkening is the natural result of a winning inward pull of gravity over a decreasing outward push fusion process due to the consumption of its hydrogen fuel.

 

   Similar to the light stars, massive "Main Sequence stars" (ten or more times the mass of our sun) also pass by the "Red Giant" phase, where they are described as "Red Super giants", but they have a quite different evolutionary path. Shrinking of the helium core of a "Red super giant" creates greater forces that restart its nuclear fusion, with a much larger gravitational pull to the center of the core (due to its greater mass) and much more active internal collisions. The combined effect of 0contraction and collision results in tremendously high temperatures capable of the gradual generation of progressively heavier atomic nuclei such as carbon, oxygen, silicon and iron through the process of nuclear fusion. A nature massive star will have an iron core surrounded outwardly by shells of silicon, oxygen, carbon, helium and hydrogen. When the "Red Super giant's" core is changed into carbon, excessive quantities of energy are released, and these lead to the outward push of a second burning front of helium towards the first and enveloping hydrogen front.

 

   With the following contraction of the carbon core, its temperature rises excessively to allow the fusion the carbon nuclei into a chain process that passes by magnesium, followed by aluminum, then silicon.

 

  The silicon core changes gradually heavier nuclei during similar episodes of contraction of the core and expansion of the surrounding fronts, releasing more energy and changing the "Red Super giant" into a "Nova", where iron starts to form. The generation of iron in the core of "Nova" starts to consume its energy, because the fusion of silicon into iron is highly endothermic (i.e. consumes excessive quantities of energy). As the core of the "Nova" changes into iron, it explodes in a form of "Supernova", ejecting its gaseous envelopes and shattering its core to pieces that fly out into space to reach other celestial bodies that need iron. During its space journey, iron may fuse with one or more of the elementary particles that fill the universe to form heavier nuclei.

1 - 2 -
The religion of Islam is growing faster than any other religion in the world.
Yes5439
I Think so2583
Not all410
No comment486
 

Fatal error: Call to undefined function session_is_registered() in /home/workspace2/public_html/elnaggarzr.com/en/footer.php on line 8